Recovery, visualization, and analysis of actin and tubulin polymer flow in live cells: a fluorescent speckle microscopy study.
نویسندگان
چکیده
Fluorescent speckle microscopy (FSM) is becoming the technique of choice for analyzing in vivo the dynamics of polymer assemblies, such as the cytoskeleton. The massive amount of data produced by this method calls for computational approaches to recover the quantities of interest; namely, the polymerization and depolymerization activities and the motions undergone by the cytoskeleton over time. Attempts toward this goal have been hampered by the limited signal-to-noise ratio of typical FSM data, by the constant appearance and disappearance of speckles due to polymer turnover, and by the presence of flow singularities characteristic of many cytoskeletal polymer assemblies. To deal with these problems, we present a particle-based method for tracking fluorescent speckles in time-lapse FSM image series, based on ideas from operational research and graph theory. Our software delivers the displacements of thousands of speckles between consecutive frames, taking into account that speckles may appear and disappear. In this article we exploit this information to recover the speckle flow field. First, the software is tested on synthetic data to validate our methods. We then apply it to mapping filamentous actin retrograde flow at the front edge of migrating newt lung epithelial cells. Our results confirm findings from previously published kymograph analyses and manual tracking of such FSM data and illustrate the power of automated tracking for generating complete and quantitative flow measurements. Third, we analyze microtubule poleward flux in mitotic metaphase spindles assembled in Xenopus egg extracts, bringing new insight into the dynamics of microtubule assemblies in this system.
منابع مشابه
Live cell imaging of F-actin dynamics via Fluorescent Speckle Microscopy (FSM).
In this protocol we describe the use of Fluorescent Speckle Microscopy (FSM) to capture high-resolution images of actin dynamics in PtK1 cells. A unique advantage of FSM is its ability to capture the movement and turnover kinetics (assembly/disassembly) of the F-actin network within living cells. This technique is particularly useful in deriving quantitative measurements of F-actin dynamics whe...
متن کاملComputational analysis of F-actin turnover in cortical actin meshworks using fluorescent speckle microscopy.
Fluorescent speckle microscopy (FSM) is a new imaging technique with the potential for simultaneous visualization of translocation and dynamic turnover of polymer structures. However, the use of FSM has been limited by the lack of specialized software for analysis of the positional and photometric fluctuations of hundreds of thousand speckles in an FSM time-lapse series, and for translating thi...
متن کاملAn easy-to-use single-molecule speckle microscopy enabling nanometer-scale flow and wide-range lifetime measurement of cellular actin filaments.
Single-molecule speckle (SiMS) microscopy has been a powerful method to analyze actin dynamics in live cells by tracking single molecule of fluorescently labeled actin. Recently we developed a new SiMS method, which is easy-to-use for inexperienced researchers and achieves high spatiotemporal resolution. In this method, actin labeled with fluorescent DyLight dye on lysines is employed as a prob...
متن کاملPeriodic patterns of actin turnover in lamellipodia and lamellae of migrating epithelial cells analyzed by quantitative Fluorescent Speckle Microscopy.
We measured actin turnover in lamellipodia and lamellae of migrating cells, using quantitative Fluorescent Speckle Microscopy. Lamellae disassembled at low rates from the front to the back. However, the dominant feature in their turnover was a spatially random pattern of periodic polymerization and depolymerization moving with the retrograde flow. Power spectra contained frequencies between 0.5...
متن کاملSimultaneous measurement of water flow velocity with fluorescent and speckle imaging technique
The average velocity of water flow has been simultaneously measured with fluorescent and speckle imaging methods. The measured velocities with two methods are in good agreement with each other and it confirms that the speckle imaging method can be used as a confident method to measure the velocity of water flow in a dry leaf. Also the velocity of water flow through thick and thin xylems of a le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 85 2 شماره
صفحات -
تاریخ انتشار 2003